Exciton binding energy in semiconducting single-walled carbon nanotubes.

نویسندگان

  • Ying-Zhong Ma
  • Leonas Valkunas
  • Sergei M Bachilo
  • Graham R Fleming
چکیده

The exciton binding energy serves as a critical criterion for identification of the nature of elementary excitations (neutral excitons versus a pair of charged carriers) in semiconductor materials. An exciton binding energy of 0.41 eV is determined experimentally for a selected nanotube type, the (8,3) tube, confirming the excitonic nature of the elementary excitations. This determination is made from the energy difference between an electron-hole continuum and its precursor exciton. The electron-hole continuum results from dissociation of excitons following extremely rapid exciton-exciton annihilation and possibly also ultrafast relaxation from the second to the first exciton states and is characterized by distinct spectroscopic and dynamic signatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal properties of quasi-one-dimensional excitons in semiconducting single-walled carbon nanotubes and π-conjugated polymers

The nature of the primary photoexcitations in semiconducting single-walled carbon nanotubes (S-SWCNTs) is of strong current interest. We have studied the emission spectra of S-SWCNTs and two different π-conjugated polymers in solutions and films, and have also performed ultrafast pump-probe spectroscopy on these systems. The emission spectra relative to the absorption bands are very similar in ...

متن کامل

Photoinduced spontaneous free-carrier generation in semiconducting single-walled carbon nanotubes.

Strong quantum confinement and low dielectric screening impart single-walled carbon nanotubes with exciton-binding energies substantially exceeding kBT at room temperature. Despite these large binding energies, reported photoluminescence quantum yields are typically low and some studies suggest that photoexcitation of carbon nanotube excitonic transitions can produce free charge carriers. Here ...

متن کامل

Probing exciton localization in single-walled carbon nanotubes using high-resolution near-field microscopy.

We observe localization of excitons in semiconducting single-walled carbon nanotubes at room temperature using high-resolution near-field photoluminescence (PL) microscopy. Localization is the result of spatially confined exciton energy minima with depths of more than 15 meV connected to lateral energy gradients exceeding 2 meV/nm as evidenced by energy-resolved PL imaging. Simulations of excit...

متن کامل

Theoretical insights into the encapsulation of anticancer Oxaliplatin drug into single walled carbon nanotubes

The present work was an attempt to evaluate the potentialities of using SWCNTs as nanovectors for drug delivery of anticancer drug Oxaliplatin. First-principles van der Waals density functional (vdW-DF) calculations are used to investigate the incorporation of oxaliplatin inside the typical semiconducting and metallic single wall carbon nanotubes with various diameters (SWCNTs). Adsorption ener...

متن کامل

Ultrafast spectroscopy of excitons in single-walled carbon nanotubes.

We studied the femtosecond dynamics of photoexcitations in films containing semiconducting and metallic single-walled carbon nanotubes (SWNTs), using various pump-probe wavelengths and intensities. We found that confined excitons and charge carriers with subpicosecond dynamics dominate the ultrafast response in semiconducting and metallic SWNTs, respectively. Surprisingly, we also found from th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 109 33  شماره 

صفحات  -

تاریخ انتشار 2005